Adult Survival, Maturation, and Reproduction of the Desert Locust Schistocerca gregaria Infected with the Fungus Metarhizium anisopliae var acridum

Simon Blanford and Matthew B. Thomas

Leverhulme Unit for Population Biology and Biological Control, NERC Centre for Population Biology and CABI BIOSCIENCE, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY, United Kingdom

E-mail: s.blanford@cabi.org

Received August 2, 2000; accepted May 3, 2001; published online July 12, 2001

Studies were conducted with two different doses of Metarhizium anisopliae var acridum to examine the effects on survival and reproductive potential of adult Schistocerca gregaria under conditions that either limited thermoregulation or enabled optimal thermoregulation. Adult S. gregaria infected with the fungal pathogen showed either a rapid and high mortality at relatively constant temperatures or a much reduced mortality and lengthened survival time when allowed to thermoregulate. Mortality rate varied from >90% after 10 days under constant temperature conditions to 66% after 70 days under optimal thermoregulatory conditions. Effects of infection on maturation and reproduction depended on the age of the adults at the time of inoculation, the nighttime temperature regime, the fungal dose, and the length of time of the monitoring period. No difference in reproductive behaviors in treated and control insects were found in one experiment that utilized older adults and was conducted over 25 days. In a second experiment with newly fledged locusts, differences in maturation rates and total reproductive output were observed due to infection. The results from these experiments are discussed in terms of the potential of M. anisopliae var acridum to alter the balance of insect endocrine systems and the importance of the assessment of behavioral changes and their impact on microbial control agents in the long term.

Key Words: Schistocerca gregaria; Metarhizium anisopliae var acridum; thermoregulation; fungal pathogens; biological control; locusts; pathogenicity of; bioassay.

INTRODUCTION

Whereas the majority of studies assessing pathogens as biocontrol agents deal with their ability to produce mortality in the target pest, a considerable number have also assessed the impact that infection may have on host behaviors that contribute to the status of the target insect as a pest. These include studies on effects of infection on feeding (e.g., Johnson and Pavlikova, 1986), developmental time (Subrahmanyam and Ramakrishnan, 1980; Olfert and Erlandson, 1991), and fecundity (Fargues et al., 1991; Zaki, 1998). However, these studies are generally conducted under environmentally constant regimes that are conducive for infection and do not consider how these behaviors and the overall impact of the pathogen might change under more realistic, variable conditions experienced in the field.

For example, in the LUBILOSA program (see Acknowledgments), which is developing a mycoinsecticide for locust and grasshopper control, previous studies have indicated that infection with the fungal entomopathogen Metarhizium anisopliae var acridum [formerly Metarhizium flavoviride Gams and Rozypal, but now reclassified (Driver et al., 2000)] can reduce feeding and flight ability in the desert locust Schistocerca gregaria Forskål (Moore et al., 1992; Seyoum et al., 1994). Although useful in highlighting the potential for such reductions, these studies were conducted at constant temperatures optimal for fungal development and gave the pathogen maximum opportunity not only to cause these important prelethal effects but also to induce high and rapid mortality. However, several studies have now shown speed of kill of a range of pathogens in locusts and grasshoppers to be dependent on environmental temperature and host thermal biology (Carruthers et al., 1992; Inglis et al., 1996, 1997, 1999; Blanford et al., 1998; Blanford and Thomas, 1999a,b). Accordingly, it is likely that sub- and prelethal effects of pathogens will also be affected with potential considerable change in relative importance. Thus, there is a need to consider the impact of
M. anisopliae var acridum infections when locusts and grasshoppers are exposed to more realistic thermal regimes and where behavioral thermoregulation is made possible. The aim of this study, therefore, was to examine the effects of M. anisopliae var acridum on adult S. gregaria under realistic thermal regimes. Two experiments are presented in which mortality, maturation, and reproduction were assessed in adult locusts following infection.

MATERIALS AND METHODS

Experiment 1

This experiment was conducted at the International Institute of Tropical Agriculture in Benin, west Africa and used 10-day-old (i.e., 10 days postfledging) adult S. gregaria taken from a long established research colony at the institute. Four treatments were used. For the first two, 40 locusts per treatment were divided into four wood-framed cages (60 x 60 x 70 cm) with mosquito-mesh sides and roof. Each cage contained 5 male and 5 female locusts. Cages were positioned in an open-sided, covered area. Thus, they experienced ambient daylight and temperature conditions but were protected from direct sunlight, wind, and rain. Ambient temperature in these cages ranged from 28 to 33°C and no internal light or heat source was provided in the cage. One treatment was inoculated with M. anisopliae var acridum. Insects were inoculated in a standardized bioassay method similar to that described in Prior et al. (1995). The fungal isolate was a single conidial isolate of M. anisopliae var acridum, isolate IMI 330189. Conidial suspensions were formulated in groundnut oil and these suspensions were placed in a bath sonicator for 1 min to break up the conidial chains, and conidial counts were made with a hemocytometer. Each locust in the treatment groups received 1 μl of conidial suspension applied with a micropipette beneath the dorsal pronotal shield. Spore suspensions were adjusted to give 1 x 10³ conidia per insect. Control insects were left uninoculated as previous experiments have shown no effect of the formulating oils (Blanford, 1999). These two treatments are designated as the “no effect of the formulating oils” in future discussion.

No assessment was made of eclosion in this experiment. Mortality, maturation rate, and observations on the number of egg pods laid, eggs per pod, and successful eclosion from these pods were also made on time of first copulation and time of first oviposition. Fecundity was assessed by measurement of the number of egg pods laid, eggs per pod, and successful eclosion from these pods.

Experiment 2

This second experiment used adult S. gregaria that were just 3 days postfledging. Each treatment contained seven male/female pairs per cage with four cages per treatment. Cage size and layout were similar to those described above and maintained under the same light:dark regime and the same thermoregulatory regime (i.e., light bulbs were switched on for 9 h). Temperatures in the cages ranged from 33 to 46°C while the light bulbs were switched on. During the night temperatures were again left at ambient which, during the study period, averaged 20.5 ± 0.1°C, with maximum of 27.6°C and minimum of 15.8°C. Insects were hand-inoculated by the methodology described above. Three treatments were used. One treatment received 5 x 10³ conidia/insect, one received 1 x 10³ conidia per insect, and one was designated as an uninoculated control.

Mortality, maturation rate, and observations on mating and oviposition were monitored as above, as were egg pods laid and number of eggs per pod. No assessment was made of eclosion in this experiment.
RESULTS

Experiment 1

Average survival time of control and treated locusts with their relative significance and standard errors are shown in Tables 1a and 1b. Figure 1 shows the cumulative proportional survival of the four treatments; 92.5% of cadavers from the \(30°C\) M. anisopliae \textit{var} \textit{acridum} treatment sporulated after incubation. Only 1.25% sporulated in the treated thermoregulation regime and no cadavers sporulated in either of the control treatments. Mortality in all treatments can be seen to be significantly different from that in the treated \(30°C\) group which showed M. anisopliae \textit{var} \textit{acridum}-induced mortality commencing on day 5 and reaching 98.7% by day 19. Temperature and treatment both had a significant influence on survival time with the \(30°C\) control treatment and the treated thermoregulation regimes both showing significantly lower survival times than the control thermoregulation treatment. Thus, inability to thermoregulate has a direct effect on the fitness of the locusts even in the absence of the pathogen.

There was no difference in the rate at which locusts matured in the treated and control thermoregulation

FIG. 1. Cumulative proportional survival of adult \textit{S. gregaria} in Experiment 1. Adults were either kept under constant conditions (30°C) without the ability to thermoregulate or kept under conditions that permitted thermoregulation (thermoregulate). Control adults were uninoculated; treated adults received \(1 \times 10^7\) M. anisopliae \textit{var} \textit{acridum} spores per insect. Control (30°C) (solid line and x); treated 30°C (dashed line and x); control (thermoregulate) (solid line and o); treated thermoregulate (dashed line and o) following inoculation with \textit{Metarhizium anisopliae} \textit{var} \textit{acridum} at a range of doses.
treatments. All locusts started at stage two and had reached stage four/five by day 20. Locusts did not mature beyond stage two in either of the 30°C treatments and no eggs or reproductive behaviors were observed. All subsequent results, therefore, refer to the two thermoregulation treatments. There was no difference in time to first observed copulation (day 4 treated, day 5 controls) nor in the time of the first oviposition (day 8 for both control and treated). No difference was found for the number of pods laid during the experiment (total $N = 80$ control and 79 treated; $t = 0.044$, df 50, $P = 0.48$) nor was any difference found for the number of eggs contained within each pod (total $N = 5541$ control and 5246 treated; $t = 1.33$, df 157, $P = 0.09$). However, there was a significant difference in eclosion between the two treatments (total $N = 4170$ for control and 3304 for treated; $t = 2.97$, df 157, $P < 0.002$).

Experiment 2

By 70 days, control mortality had reached 18.2% and mortality in the fungal treatments had reached 64.7 and 90.2% in the 5×10^3 and 1×10^5 treatments, respectively. M. anisopliae var acridum sporulation was observed on 18.2 and 33.3% of cadavers in the 5×10^3 and 1×10^5 fungal treatments, respectively. No sporulation was found for any control cadaver. Survival analysis revealed significant differences both between the M. anisopliae var acridum-treated locusts and the controls and between the two doses used in the fungal treatments (Tables 2a and 2b, Fig. 2). Analysis of average survival time over just the first 25 days (as in Experiment 1) gave no difference between any group (control 24.13 (± 0.59) days; 5×10^3 24.85 (± 0.12) days; 1×10^5 24.49 (± 0.43) days; $P > 0.05$ for all treatments).

The rate of maturation became significantly different in control and treated groups as the experiment progressed. All insects started at stage one at the beginning of the experiment. Significant differences were found after the first week with the 5×10^3 treatment more mature than either control or the 1×10^5 treatment ($F_{2,81} = 3.40$, $P = 0.038$). At day 14 both fungal treatments were significantly different from controls ($F_{2,80} = 56.9$, $P < 0.0001$) and this difference continued until the end of the fourth week ($F_{2,79} = 40.14$, $P < 0.0001$ and $F_{2,79} = 6.422$, $P = 0.0026$ on day 21 and day 28, respectively). All males were categorized as stage five by day 33 (Fig. 3a).

First mating was observed in both M. anisopliae var acridum treatments on day 11 and in controls on day 13. First oviposition was observed on day 13 in both M.

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>Average Survival Time and Significance between Treatments for Adult Schistocerca gregaria Experiment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Kaplan–Meier analysis of average survival time (days ± SE) in SPSS for Windows</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5×10^3</td>
</tr>
<tr>
<td>AST (±SE)</td>
<td>64.37 (±2.01)</td>
</tr>
<tr>
<td>95% Conf. Int.</td>
<td>60.43, 68.32</td>
</tr>
<tr>
<td>(b) Log rank statistic and significance of survival times between treatments</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5×10^3</td>
</tr>
<tr>
<td>5×10^3</td>
<td>20.68</td>
</tr>
<tr>
<td>1×10^5</td>
<td>63.44</td>
</tr>
<tr>
<td>$P < 0.0005$</td>
<td></td>
</tr>
</tbody>
</table>

Note. Control adults were uninoculated, M. anisopliae var acridum treatments received either 5×10^3 or 1×10^5 spores per insect.
anisopliae var acridum treatments and on day 17 in the control treatment.

A significant difference was found for total number of egg pods laid in the fungal treatments and the controls ($F_{2,210} = 27.62$, $P = 0.0028$) but no effect of dose was observed on egg pods laid in fungal treatments. When per capita number of pods laid was examined, no significant difference was found in any of the treatments ($F_{2,210} = 0.0063$, $P = 0.59$). However, toward the end of the experiment, a trend toward an increased per capita output by control females is apparent (Fig. 3b) and it is possible that should the experiment have been run for longer this would have become significant.

Control insects laid 8756 (mean ± SE per insect = 46.8 ± 1.01) eggs. Treated insects laid 5664 (48.4 ± 1.38) eggs and 4851 (46.2 ± 0.97) eggs in the 5×10^3 and 1×10^5 treatments, respectively. No difference was found in any treatment for the number of eggs laid per pod ($F_{2,406} = 0.85$, $P = 0.43$; Tukey HSD > 0.05 between all treatments).

DISCUSSION

Infected locusts died at a more rapid rate than control insects in both experiments. However, the pattern of mortality within and between experiments was...
markedly different. At close to optimal temperatures for pathogen growth (Thomas and Jenkens, 1997) treated insects maintained at ~30°C in experiment 1 died rapidly. Allowance for thermoregulation resulted in a reduction in overall mortality but still a significant difference from control insects allowed to thermoregulate. Interestingly, the lack of difference between control insects held at ~30°C and infected insects allowed to thermoregulate highlights the fundamental importance of this behavior to the overall fitness of the insect. In contrast, survival times over the first 25 days in Experiment 2 were not different between either of the fungal treatments and controls. Thus, if the experiment had been terminated in line with Experiment 1, the actual mortality achieved across the whole study period would have been masked. Studies on fungal pathogens for control of grasshoppers and locusts have often been terminated after comparatively brief assessment periods [e.g., Fargues et al. (1997) monitored for 12 days in the laboratory; Delgado et al. (1997) monitored for 7 days in field plots; Lomer et al. (1997) monitored for 30 days in field plots] and as such, real control effects may have been masked.

Studies by Inglis et al. (1997, 1999) have demonstrated increased survival time of grasshoppers infected with a different isolate of M. anisopliae var acridum and exposed to various thermal regimes. As such they support the mortality data presented here in that with increasing temperature the rate of mortality is slower. However, in these experiments survival time is considerably longer than those of Inglis et al. (1997, 1999). A number of differences are apparent between these latter studies and the experiments detailed here. Doses applied in Experiment 1 and for one treatment in Experiment 2 were much lower, the length of exposure to the light bulbs was longer in these experiments, thus providing additional inhibition, and nighttime temperatures in Experiment 2 were cooler. A further difference was that in these experiments the ability to select a temperature within a gradient allowed the development of behavioral fever. This behavior has been demonstrated in S. gregaria (Blanford and Thomas, 1999b) and for a number of thermoregulating acridids (Blanford, 1999). Survival benefits of fever are not clear (Blanford et al., 1998) but may enhance survival time [note: Boorstein and Ewald (1987) claimed survival benefits for Melanoplus sanguinipes infected with Nosema acridiophagus due to fever yet based their thermal regimes on inappropriate thermal preferred temperatures of this grasshopper (Lactic and Johnson, 1996, 1998)].

The difference in survival in treated locusts permitted to thermoregulate in Experiments 1 and 2 may be attributed to the higher nighttime temperatures in Experiment 1. It appears that though higher doses were employed in Experiment 2, the cooler nights mitigated any dose effect. This may have important consequences as it highlights the fact that a considerable increase in dose will not necessarily counter balance daytime temperature effects and thermal behavior, if nighttime temperatures are themselves not conducive for pathogen growth.

The population reductions and the decrease in fecundity shown in this study may not decrease the pest status of adult S. gregaria in the short term [indeed, if Experiment 2 had been terminated after 25 days, treated locusts would have laid a greater number of egg pods (21, 36, and 40 for control and the two fungal treatments, respectively) and a larger number of eggs (933, 1669, and 1770 for control and the two fungal treatments, respectively)] but can be seen as highly effective in the long term. Uninfected locusts can survive for upward of 100 days and have the ability to lay eggs continually through this period (Norris, 1952). The differences found between control and treated locusts would thus be expected to increase over time. In addition, survival for infected locusts under field conditions rather than these optimal laboratory conditions is likely to be lower, and longevity reduced, in comparison to healthy locusts, thus increasing the control effects (Thomas et al., 1998). This fact raises an important consideration. That is, it can be argued that assessments of fungal pathogens based on their ability to produce mortality in target insects (e.g., under bioassay conditions that favor pathogen growth—effectively the ~30°C treatment in Experiment 1) present a “best case” scenario for biocontrol. As such, these experiments are useful for showing the potential suitability of the candidate pathogen for inducing mortality. However, it is clear that such survival under optimal laboratory conditions will not reflect actual survival time in the field where locusts can thermoregulate and nighttime temperatures may vary considerably from the optimum for growth. Thus, the adult experiments above can be described as “worst case” scenarios, albeit perhaps realistic scenarios at times when optimal thermoregulation is possible. Importantly, these worst case studies highlight the fact that M. anisopliae var acridum, and potentially other pathogens that may not show rapid or high mortality in the short term, may still effect considerable control of a treated population in the long term. Indeed real field environments would be expected to increase the rate of mortality and/or reduction in fecundity when there are variations in either biotic (e.g., predation) or abiotic (e.g., limitations to thermoregulation) conditions.

What emerges from this is that the screening and testing of candidate pathogens should consider both best and worst case scenarios to make an informed judgement on the suitability of agents for control under different conditions. All too often, screening and bioassays are conducted under best case scenarios, leading to false expectations and misconceptions on efficacy.
and ultimately, when judged by these criteria, variable performance and even failure in the field.

Infection with *M. anisopliae* var acridum caused a significant change in the rate of maturation of adults in Experiment 2 but not in the initial experiment. Norris (1954) has shown that wounding *S. gregaria* can induce more rapid maturation but suggested that this was restricted to young adults and was not the case in older adults. One hypothesis to account for this is that the synthesis of juvenile hormone is affected. Maturation is controlled by this hormone, which is lacking in newly fledged adults (Nijhout, 1994). Juvenile hormone titers begin to increase after 3 to 4 days and reach a peak between 10 and 12 days after adult emergence. This period of somatic growth results in the maturation of the first oocyte (Injeyan and Tobe, 1981). At this stage visual changes can start to be seen in the resulting color change of adult males (Pener, 1967). The difference observed for the effect of *M. anisopliae* var acridum on maturation can, perhaps, be attributed to interference in the synthesis of juvenile hormone. If this is so, juvenile hormone titers in older adults (Experiment 1) would already have been high and further stimulus of juvenile hormone secretion may not have had an effect on the maturation process. Conversely, infection of newly fledged locusts (Experiment 2), in which juvenile hormone synthesis has either not commenced or in which titers are still low, might induce rapid production of the hormone and in turn a decrease in the time to maturation. A further complimentary hypothesis is that behavioral fever may result in an increasing rate of hormone synthesis via Q_{10} effects on the locust endocrine system. These hypotheses are currently being tested but empirical support comes from the locust endocrine system. These hypotheses are cur-

The results presented here could be interpreted as indicating indifferent performance of *M. anisopliae* var acridum against adult *S. gregaria*, possibly leading to the recommendation that this pathogen should not be used for control of adult stages. However, though these studies have highlighted the fact that thermoregulation of adult locusts can prolong disease incubation considerably, control effects, in terms of ultimate mortality and fecundity, are still significant. Interpretation of the results for their long-term impact on locust populations via mortality and behavioral changes is, therefore, a more robust measure of the likely performance of this pathogen in the field.

ACKNOWLEDGMENTS

This work forms part of the LUBILOSA (Lutte Biologique contre les Locustes et Sauteriaux) program, which is funded by the Canadian International Development Agency, the Directorate General for Development Cooperation of the Netherlands, the Swiss Development Cooperation, and the Department for International Development of the UK. Simon Blanford was funded by a research grant from NERC, Grant GT4/95/186/T.

REFERENCES

