likely to produce statistically robust results. Furthermore, some of the relevant factors that are needed to understand China’s regional emissions, such as technological change and urbanization, are not included in the analysis. It is widely recognized that changes in the emissions intensity of a country or region are explained, at least in part, by the rate at which technological change occurs in the area, as rapid technical progress tends to reduce the share of emissions per unit of income. Furthermore, the impressive urban development in China over the past decades has largely accounted for the increased levels of emissions in the country. Lack of consideration of these factors in the study spoils the conclusions regarding the amount and the direction of the estimated emissions transfers.

Nevertheless, the study by Meng and colleagues draws attention to the spatial distribution of carbon emissions within China and relates it to the level of economic development in the different areas. Their proposal of setting customized sub-goals for different regions based on their local situation is a sensible way to address the rising concerns about carbon dioxide emissions in China. The technical and financial support from the east would allow the centre and the west to meet their abatement targets while fostering economic development where it is most needed. This proposed approach could also guide other countries that have a similar emissions profile and similar regional characteristics.©

Krijn P. Paaijmans and Matthew B. Thomas

Health

Wealth versus warming

The response of malaria distribution to climate change has been debated. Statistical models suggest that by 2050, increasing national wealth will limit the expansion of malaria risk caused by rising temperatures.

Managing malaria: increased income affords interventions such as distributing mosquito netting, spraying residential areas and access to treatment.

Béguin and colleagues aimed to quantify this effect by investigating the interaction of climatic and socio-economic factors on the global distribution of malaria in the future. Their statistical model included the mean temperature of the coldest month and the mean precipitation of the wettest month, which represent the intrinsic factors, and a square root transformation of per capita GDP to constrain the extrinsic factors. Their model accurately captured the current global geographical distribution of malaria.

References
ADAPTATION

Conservation for any budget

Deciding where and how to allocate scarce funding to conserve plants and animals in a changing and uncertain climate is a thorny issue. Numerical modelling identifies the most effective mix of conservation measures based on the level of expenditure available.

Joshua J. Lawler

Strategies for reducing the impacts of climate change on ecological systems include suppressing fires, installing snow fences, designating preserves, removing dams and moving species to new locations. For many ecosystems under threat, more than one intervention could have positive impacts. However, climate projections are uncertain and ecological responses even more so, and as such there is little guidance on how to decide which effort to prioritize in the face of often limited funds. Writing in Nature Climate Change, Wintle and colleagues use model